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Noncommutativity of Quantum Observables 
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Given a quantum logic (L, 5~), a measure of noncommutativity for the elements 
of L was introduced by Rom~in and Rumbos. For  the special case when L is the 
lattice of closed subspaces of a Hilbert space, the noncommutativity between 
two atoms of L was related to the transition probability between their 
corresponding pure states. Here we generalize this result to the case where one 
of the elements of L is not necessarily an atom. 

1. P R E L I M I N A R I E S  

Most of the following definitions are well known. The reader is 
referred to Beltrametti and Cassinelli (1981) and Jauch (1973) for 
further details. A complete orthocomplerrlented lattice (L, ~<, /x, v ,  • is 
said to be orthomodular if, given a<~b in L, then b = a v  (bAa• 
A map s: L ~ [0 ,1 ]  is a state on L if s (0 )=0 ,  s ( 1 ) = l ,  and 
s( v ai)= Z s(ai) given ai~< @ for i#j .  Here 1 and 0 also denote, respec- 
tively, the greatest and least elements of L. A set Y of states is full when- 
ever s(a) <~ s(b) for all s e 50 implies a ~< b. Moreover, a state s is pure if it 
cannot be expressed as a convex combination of other elements of 5 ~ A 
pair (L, 5O) where L is an orthomodular  lattice and 5O is a full set of states 
is generally known in the literature as a quantum logic. 

Let ~ ( R )  denote, as usual, the Borel sets of ~. An L-observable (or 
observable for short when no confusion arises) is just an L-valued measure, 
that is, a map !~: ~ ( ~ )  --. L satisfying ~ ( ~ )  = 0, (?(~) = 1, and !~(U Bi) = 
Z ~(Bi) given BinBj= ~ when i#j .  

Given an orthomodular lattice L, Romfin and Rumbos (1991) propose 
the use of a noncommutative "conjunction" in L, denoted by the amper- 
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sand & and defined by a & b = ( a v  b • ^ b for .any a, bEL.  Here one 
readily recognizes the Sasaki projection as the map ( _ ) &  b. It is well 
known that this map preserves arbitrary unions. It will always be assumed 
here that the lattice L is atomic (and hence atomistic) and has the so-called 
covering property, that is (in one of its equivalent formulations), if a, p ~ L 
so that p is an atom and p ~ a • then p & a  is an atom. These two 
properties are usually taken for granted when speaking about quantum 
logics. 

In Romfin and Rumbos (1991) the commutativity gap between any 
two elements a, b E L is defined by A(a, b) = sup,~s, ]s(a & b) - s(b & a)l. 
This definition can be extended to arbitrary L-observables as suggested in 
Maczynski (1981) and Rumbos (1993) as follows: 

If s ~3 are two L-observables, then 

A(J0, ~ )  sup A(O(E), ~3(F)) 
E, F e B ( R )  

In, Rumbos (1993) it was seen that whenever there exists a bijection 
between the atoms of L and the pure states of 5g, one can define the 
Concept of transition probability in the quantum logic (L, 5 e) in the 
following way: 

If sa and Sb are two pure states corresponding to the atoms a and b 
in L, the transition probability trp(sa, Sb) between sa and Sb is given by 

trp(sa, s b ) = [ 1 - A 2 ( a , b )  if a ~ b  • 
0 if a<.b • 

This definition was motivated from the case L = ~(H) ,  where ~ ( H )  is 
the lattice of closed subspaces (or equivalently the lattice of projections) of 
the Hilbert space (H, ( . ,  �9 5); here (- ,  - ) is, as usual, the scalar product. If 
a# denotes the set of unit vectors of H, a full set of (pure) states is given 
by 

= {s,: ~ ( H ) ~  [0, 1] Isu(p) = (p(u) ,  u )  VpsL ,  ue~ 

The transition probability between su and sv is given in the usual way by 
I(u, v SI 2. If Pu denotes the one-dimensional projection onto the space 
generated by u s o//, then Pu ~ Su is a one-to-one correspondence between 
the atoms of ~ ( H )  and the pure states of 6e. The following proposition was 
proved in Romfin and Rumbos (1991). 

Proposition 1.1. Given u, v~q/,  (u, v)  50 ,  then 

A(p,,  p~) = (1 - - I (u ,  v512) '/2 
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It is clear from here how to obtain the more general definition of 
transition probability as given above. 

It is well known that the spectral theorem yields a bijection between 
~(H)-observables and self-adjoint operators on H. The eigenvalues of the 
operator are the possible values of the observable. When L = ~ ( H )  and 9 ,  
~ are observables with pure point spectra and nondegenerate eigenvalues, 
it is straightforward from the definition of A(~, ~ )  and Proposition 1 that 
if {~oi} and {~:} are, respectively, the discrete sets of eigenstates of ~? and 
~,  then 

A(~,  r = sup (1 - I  (~o,, ~,:)1~) '/~ 
i , j  

Now, what if one of the eigenvalues of ~ was degenerate and possessed an 
eigenspace of dimension different from 1? Or what if ~ has a continuous 
spectrum? Would a similar result hold? We shall presently see that this is 
indeed the case. 

2. THE MAIN RESULT 

In this section L = ~(H) ,  5: is the usual full set of (pure) states, and 
is the set of unit vectors of H as described before. The properties stated 

in the next lemma are well known, but for the sake of completness, proofs 
are included. 

Lemma 2.1. Let V be any closed subspace of H and u e q/, u ~ V I. 
If P v and p ,  denote, respectively, the projections onto V and the one- 
dimensional subspace generated by u, the following hold: 

(i) p v &  p , =  p ,  

(ii) pu&pv= pw , where w=pv(u)/][p~(u)[] 

Proof Part (i) is clear, since O r  and Pu is an atom. 
For part (ii), observe that pw<~pv and pw<~p, v p~;  from here we have 
that Or v p ~ ) ^  p v = p , & p v ,  but from the covering property 
P, & Pv is an atom, so we must have Pu & Pv = Pw as stated. �9 

The next corollary is an immediate consequence of the above and the 
fact that ( ) & p preserves joins for any p ~ ~ (H) ;  it gives us an explicit 
description of the ampersand. 
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Corollary 2.2. Let V and W be closed subspaces of H, and let 
{vl, v2 . . . .  } be an or thonormal  basis (not necessarily finite) for V. The 
following identity then holds: 

pw(v3 
p v &  P w =  V pw: where w, Ilpw(vi)l[ 

We are now ready to state the main result. 

Theorem 2.3. Let V be a closed subspace of H and w e q/, w ~ V • 
Then 

A ( p ~ ,  Pw) = ( l  - IlPv(w)ll 2)1/2 

Proof First observe that 

A(pw, Pv) = sup I ( ( P v  & Pw --Pw & Pv) u, u)[ = IlPv & Pw --Pw & Pvll 
u ~ U  

where by abuse of notation 11" II will also denote the operator  norm. 
If we  V, then IlPv(W)ll = 1 and A(pw, pv)  = ]lpw-pwll = 0 ,  so the 

result clearly holds. Suppose now that w r V. F rom the definition of A and 
the lemma we have A(pw, p v) = lip v & Pw - Pw & P vii = II Pw - P~, II, where 

so that 

pv(w) 
f f l  - -  - -  

IIpv(w)ll 

mZ(Pw, Pv) = IIpw- p~[I 2 

= I I ( p w - p ~ ) ( p , , - p ~ ) l l  

- - - N p w + p ~ - p w p , - p r  

= s u p  I((p~:+ p 4 , - p w p ~ , - p ~ p , , )  u, u) l  
t t ~  U 

(1) 

Given any u e q / a n d  noting that 

<w, ~} = Iw ' ~/Pv(W) \ = llpV(w)ll 

one has 
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((P~: + PC, --PwPr -P~,Pw) u, u) 

= ((w, u) w+ (~,, u) ~ -  (p~(w), u) w -  ( w -  (w, u) p~(w), u) 

= ( ( w - p ~ ( w ) ,  u ) [ w - p ~ ( w ) ]  

+ [1-IIpv(w)[12](pv(W), u) pv(w) I 
ilpv(w)[12, u 

= I(w-pv(w),u)lZ+(1-1[Pv(w)ll 2) \ ~ ,u (2) 

Using the fact that [w - pv(w)]/llw - pv(w)H and pv(w)/llpv(W)ll are 
part of an orthonormal basis, when u is expressed in terms of this basis we 
obtain 

l=Nulll> NW- pv(w)ll' u I + , u \ p~(w) 

Observing that tlw-pv(w)[12= 1 -  Ilpv(w)ll 2, we combine the above with 
expression (2) in order to get 

](w-pv(w),~)12+El-llpv(W)][2]]~ PV(w) I 2 \ IIp~(w)lt' u ~< 1 -Ilpv(w)ll  2 

Since this holds for any u ~ ,  expression (1) is also bounded above by 
1 -Itpv(w)ll 2. Noting that for u = w this upper bound is actually attained, 
we conclude that P tp v & p,, - p~ & p v I[ 2 1 1 - -  J l p v(W)H 2 and hence A (pw, P v) = 
1 -rlpv(w)ll2] 1/2, which is the desired result. �9 

Corollary 2.4. Let ~ = { s , : ~ ( H ) ~  E0, 1 ] l u ~ }  be the usual full 
set of states on ~(H).  For any p e ~ ( H )  we have that 

s~(p)=fl-~A2(pu, p) if Pu ~ P •  
10 if p ~  p• 

Proof Immediate, since s~(p)= Ilp(u)l] 2. �9 

Corollary 2.5. Let ~ and ~3 be two ~3(H)-observables. If ~3 has a 
pure point spectrum {2i} consisting of nondegenerate eigenvalues and {v;} 
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is the corresponding set of eigenvectors, the measure of noncommutat ivi ty 
between ~ and ~ is given by 

a ( ~ , ~ ) =  sup [1-s~(cC(E))]  1/: 
E~B(R) 

P r o o f  Immediate  from the definition of A(~,  ~ )  and Corollary 2.4. 

To conclude, we just point out that the proof  of Theorem 2.3 avoids 
the use of matrices, as in Maczynski (1981) and Romfin and Rumbos 
(1991); this has the advantage that the closed subspace V can be taken to 
be infinite dimensional. 
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